Displaying 21 – 40 of 88

Showing per page

Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials

Pascal Auscher, Besma Ben Ali (2007)

Annales de l’institut Fourier

We show various L p estimates for Schrödinger operators - Δ + V on n and their square roots. We assume reverse Hölder estimates on the potential, and improve some results of Shen. Our main tools are improved Fefferman-Phong inequalities and reverse Hölder estimates for weak solutions of - Δ + V and their gradients.

Maximal singular integrals on product homogeneous groups

Yong Ding, Shuichi Sato (2014)

Studia Mathematica

We prove L p boundedness for p ∈ (1,∞) of maximal singular integral operators with rough kernels on product homogeneous groups under a sharp integrability condition of the kernels.

Mean Oscillation and Boundedness of Multilinear Integral Operators with General Kernels

Liu Lanzhe (2014)

Archivum Mathematicum

In this paper, the boundedness properties for some multilinear operators related to certain integral operators from Lebesgue spaces to Orlicz spaces are proved. The integral operators include singular integral operator with general kernel, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.

Measure-geometric Laplacians for partially atomic measures

Marc Kesseböhmer, Tony Samuel, Hendrik Weyer (2020)

Commentationes Mathematicae Universitatis Carolinae

Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure η supported on a compact subset of U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator η and a second order differential operator Δ η , with respect to η . We generalize this approach to measures of the form η : = ν + δ , where ν is non-atomic and δ is finitely supported. We determine analytic...

Measure-preserving quality within mappings.

Stephen Semmes (2000)

Revista Matemática Iberoamericana

In [6], Guy David introduced some methods for finding controlled behavior in Lipschitz mappings with substantial images (in terms of measure). Under suitable conditions, David produces subsets on which the given mapping is bilipschitz, with uniform bounds for the bilipschitz constant and the size of the subset. This has applications for boundedness of singular integral operators and uniform rectifiability of sets, as in [6], [7], [11], [13]. Some special cases of David's results, concerning projections...

Medians, continuity, and vanishing oscillation

Jonathan Poelhuis, Alberto Torchinsky (2012)

Studia Mathematica

We consider properties of medians as they pertain to the continuity and vanishing oscillation of a function. Our approach is based on the observation that medians are related to local sharp maximal functions restricted to a cube of ℝⁿ.

Mixed A p - A estimates with one supremum

Andrei K. Lerner, Kabe Moen (2013)

Studia Mathematica

We establish several mixed A p - A bounds for Calderón-Zygmund operators that only involve one supremum. We address both cases when the A part of the constant is measured using the exponential-logarithmic definition and using the Fujii-Wilson definition. In particular, we answer a question of the first author and provide an answer, up to a logarithmic factor, to a conjecture of Hytönen and Lacey. Moreover, we give an example to show that our bounds with the logarithmic factors can be arbitrarily smaller...

Currently displaying 21 – 40 of 88