Displaying 41 – 60 of 88

Showing per page

Modulation invariant and multilinear singular integral operators

Michael Christ (2005/2006)

Séminaire Bourbaki

In a series of papers beginning in the late 1990s, Michael Lacey and Christoph Thiele have resolved a longstanding conjecture of Calderón regarding certain very singular integral operators, given a transparent proof of Carleson’s theorem on the almost everywhere convergence of Fourier series, and initiated a slew of further developments. The hallmarks of these problems are multilinearity as opposed to mere linearity, and especially modulation symmetry. By modulation is meant multiplication by characters...

Modulation space estimates for multilinear pseudodifferential operators

Árpád Bényi, Kasso A. Okoudjou (2006)

Studia Mathematica

We prove that for symbols in the modulation spaces p , q , p ≥ q, the associated multilinear pseudodifferential operators are bounded on products of appropriate modulation spaces. In particular, the symbols we study here are defined without any reference to smoothness, but rather in terms of their time-frequency behavior.

Modulation space estimates for Schrödinger type equations with time-dependent potentials

Wei Wei (2014)

Czechoslovak Mathematical Journal

We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian ( - Δ ) κ / 2 with 1 κ 2 . Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding...

Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm

A. Pełczyński, M. Wojciechowski (1993)

Studia Mathematica

Let E be a Banach space. Let L ¹ ( 1 ) ( d , E ) be the Sobolev space of E-valued functions on d with the norm ʃ d f E d x + ʃ d f E d x = f + f . It is proved that if f L ¹ ( 1 ) ( d , E ) then there exists a sequence ( g m ) L ( 1 ) ¹ ( d , E ) such that f = m g m ; m ( g m + g m ) < ; and g m 1 / d g m ( d - 1 ) / d b g m for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding L ( 1 ) ¹ ( d , E ) L ² ( d , E ) . In particular, the embedding into Besov spaces L ¹ ( 1 ) ( d , E ) B p , 1 θ ( p , d ) ( d , E ) is proved, where θ ( p , d ) = d ( p - 1 + d - 1 - 1 ) for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada....

Molecules in coorbit spaces and boundedness of operators

Karlheinz Gröchenig, Mariusz Piotrowski (2009)

Studia Mathematica

We study the notion of molecules in coorbit spaces. The main result states that if an operator, originally defined on an appropriate space of test functions, maps atoms to molecules, then it can be extended to a bounded operator on coorbit spaces. For time-frequency molecules we recover some boundedness results on modulation spaces, for time-scale molecules we obtain the boundedness on homogeneous Besov spaces.

Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck

Giancarlo Mauceri (2004)

Bollettino dell'Unione Matematica Italiana

Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.

Monotonic rearrangements of functions with small mean oscillation

Dmitriy M. Stolyarov, Vasily I. Vasyunin, Pavel B. Zatitskiy (2015)

Studia Mathematica

We obtain sharp bounds for the monotonic rearrangement operator from "dyadic-type" classes to "continuous" ones; in particular, for the BMO space and Muckenhoupt classes. The idea is to connect the problem with a simple geometric construction named α-extension.

Moyennes sphériques et opérateur de Helmholtz itéré

Francisco Vieli (1995)

Colloquium Mathematicae

Il est bien connu qu’une fonction f sur n est harmonique - Δf = 0 - si et seulement si sa moyenne sur toute sphère est égale à sa valeur au centre de cette sphère. De manière semblable, f vérifie l’équation de Helmholtz Δf + cf = 0 si et seulement si sa moyenne sur la sphère de centre x et de rayon r vaut Γ ( n / 2 ) ( r c / 2 ) ( 2 - n ) / 2 J ( n - 2 ) / 2 ( r c ) · f ( x ) . Dans ce travail, nous généralisons ces résultats à l’opérateur ( Δ + c ) k où k est un entier strictement positif et c une constante non nulle. Bien qu’une méthode pour y parvenir soit esquissée dans...

Muckenhoupt-Wheeden conjectures in higher dimensions

Alberto Criado, Fernando Soria (2016)

Studia Mathematica

In recent work by Reguera and Thiele (2012) and by Reguera and Scurry (2013), two conjectures about joint weighted estimates for Calderón-Zygmund operators and the Hardy-Littlewood maximal function were refuted in the one-dimensional case. One of the key ingredients for these results is the construction of weights for which the value of the Hilbert transform is substantially bigger than that of the maximal function. In this work, we show that a similar construction is possible for classical Calderón-Zygmund...

Multidimensional decay in the van der Corput lemma

Michael Ruzhansky (2012)

Studia Mathematica

We establish a multidimensional decay of oscillatory integrals with degenerate stationary points, gaining the decay with respect to all space variables. This bridges the gap between the one-dimensional decay for degenerate stationary points given by the classical van der Corput lemma and the multidimensional decay for non-degenerate stationary points given by the stationary phase method. Complex-valued phase functions as well as phases and amplitudes of limited regularity are considered. Conditions...

Multi-dimensional Fejér summability and local Hardy spaces

Ferenc Weisz (2009)

Studia Mathematica

It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space W ( h p , ) to W ( L p , ) . This implies the almost everywhere convergence of the Fejér means in a cone for all f W ( L , ) , which is larger than L ( d ) .

Multilinear almost diagonal estimates and applications

Árpád Bényi, Nikolaos Tzirakis (2004)

Studia Mathematica

We prove that an almost diagonal condition on the (m + 1)-linear tensor associated to an m-linear operator implies boundedness of the operator on products of classical function spaces. We then provide applications to the study of certain singular integral operators.

Multilinear Calderón-Zygmund operators on weighted Hardy spaces

Wenjuan Li, Qingying Xue, Kôzô Yabuta (2010)

Studia Mathematica

Grafakos-Kalton [Collect. Math. 52 (2001)] discussed the boundedness of multilinear Calderón-Zygmund operators on the product of Hardy spaces. Then Lerner et al. [Adv. Math. 220 (2009)] defined A p weights and built a theory of weights adapted to multilinear Calderón-Zygmund operators. In this paper, we combine the above results and obtain some estimates for multilinear Calderón-Zygmund operators on weighted Hardy spaces and also obtain a weighted multilinear version of an inequality for multilinear...

Multilinear commutators for fractional integrals in non-homogeneous spaces.

Guoen Hu, Yan Meng, Dachung Yang (2004)

Publicacions Matemàtiques

Under the assumption that m is a non-doubling measure on Rd, the authors obtain the (Lp,Lq)-boundedness and the weak type endpoint estimate for the multilinear commutators generated by fractional integrals with RBMO (m) functions of Tolsa or with Osc exp Lr(m) functions for r greater than or equal to 1, where Osc exp Lr(m) is a space of Orlicz type satisfying that Osc exp Lr(m)=RBMO(m) if r=1 and Osc exp Lr(m) is a subset of RBMO(m) if r&gt;1.

Multilinear Fourier multipliers with minimal Sobolev regularity, I

Loukas Grafakos, Hanh Van Nguyen (2016)

Colloquium Mathematicae

We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces H p k , 0 < p k 1 , to Lebesgue spaces L p . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral condition...

Currently displaying 41 – 60 of 88