Some oscillatory integrals and their applications
We study norm convergence of Bochner-Riesz means associated with certain non-negative differential operators. When the kernel satisfies a weak estimate for large values of m we prove norm convergence of for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.
In this paper we establish a formal connection between the average decay of the Fourier transform of functions with respect to a given measure and the Hausdorff behavior of that measure. We also present a generalization of the classical restriction theorem of Stein and Tomas replacing the sphere with sets of prefixed Hausdorff dimension n - 1 + α, with 0 < α < 1.
We provide new assertions on factorization of tent spaces.
Properties of a maximal function for vector-valued martingales were studied by the author in an earlier paper. Restricting here to the dyadic setting, we prove the equivalence between (weighted) inequalities and weak type estimates, and discuss an extension to the case of locally finite Borel measures on ℝⁿ. In addition, to compensate for the lack of an inequality, we derive a suitable BMO estimate. Different dyadic systems in different dimensions are also considered.
This paper deals with function spaces of varying smoothness , where the function :x ↦ s(x) determines the smoothness pointwise. Those spaces were defined in [2] and treated also in [3]. Here we prove results about interpolation, trace properties and present a characterization of these spaces based on differences.
Some martingale analogues of Sawyer's two-weight norm inequality for the Hardy-Littlewood maximal function Mf are shown for the Doob maximal function of martingales.
We produce several situations where some natural subspaces of classical Banach spaces of functions over a compact abelian group contain the space c₀.
We characterize the pairs of weights on ℝ for which the operators are of weak type (p,q), or of restricted weak type (p,q), 1 ≤ p < q < ∞, between the Lebesgue spaces with the coresponding weights. The functions h and k are positive, h is defined on , while k is defined on . If , , 0 ≤ β ≤ α ≤ 1, we obtain the operator . For this operator, under the assumption 1/p - 1/q = α - β, we extend the weak type characterization to the case p = q and prove that in the case of equal weights and...
We study the boundedness of the one-sided operator between the weighted spaces and for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of from to , where denotes the operator M¯ iterated k times.