The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 101 – 120 of 135

Showing per page

Spaces of generalized smoothness on h-sets and related Dirichlet forms

V. Knopova, M. Zähle (2006)

Studia Mathematica

The paper is devoted to spaces of generalized smoothness on so-called h-sets. First we find quarkonial representations of isotropic spaces of generalized smoothness on ℝⁿ and on an h-set. Then we investigate representations of such spaces via differences, which are very helpful when we want to find an explicit representation of the domain of a Dirichlet form on h-sets. We prove that both representations are equivalent, and also find the domain of some time-changed Dirichlet form on an h-set.

Spaces of sequences, sampling theorem, and functions of exponential type

Rodolfo Torres (1991)

Studia Mathematica

We introduce certain spaces of sequences which can be used to characterize spaces of functions of exponential type. We present a generalized version of the sampling theorem and a "nonorthogonal wavelet decomposition" for the elements of these spaces of sequences. In particular, we obtain a discrete version of the so-called φ-transform studied in [6] [8]. We also show how these new spaces and the corresponding decompositions can be used to study multiplier operators on Besov spaces.

Spectral decompositions and harmonic analysis on UMD spaces

Earl Berkson, T. Gillespie (1994)

Studia Mathematica

We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for L X p to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.

Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth

Michael Cowling, Saverio Giulini, Andrzej Hulanicki, Giancarlo Mauceri (1994)

Studia Mathematica

We prove that on Iwasawa AN groups coming from arbitrary semisimple Lie groups there is a Laplacian with a nonholomorphic functional calculus, not only for L 1 ( A N ) , but also for L p ( A N ) , where 1 < p < ∞. This yields a spectral multiplier theorem analogous to the ones known for sublaplacians on stratified groups.

Spectrum of Functions for the Dunkl Transform on R^d

Mejjaoli, Hatem, Trimèche, Khalifa (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 42B10In this paper, we establish real Paley-Wiener theorems for the Dunkl transform on R^d. More precisely, we characterize the functions in the Schwartz space S(R^d) and in L^2k(R^d) whose Dunkl transform has bounded, unbounded, convex and nonconvex support.

Spectrum of Signals.

Vu Kim Tuan (2001)

The journal of Fourier analysis and applications [[Elektronische Ressource]]

Spherical means and measures with finite energy

Themis Mitsis (2009)

Colloquium Mathematicae

We prove a restricted weak type inequality for the spherical means operator with respect to measures with finite α-energy, α ≤ 1. This complements recent results due to D. Oberlin.

Spherical summation : a problem of E.M. Stein

Antonio Cordoba, B. Lopez-Melero (1981)

Annales de l'institut Fourier

Writing ( T R λ f ) ^ ( ξ ) = ( 1 - | ξ | 2 / R 2 ) + λ f ^ ( ξ ) . E. Stein conjectured j | T R j λ f i | 2 1 / 2 p C j | f j | 2 1 / 2 p for λ &gt; 0 , 4 3 p 4 and C = C λ , p . We prove this conjecture. We prove also f ( x ) = lim j T 2 j λ f ( x ) a.e. We only assume 4 3 + 2 λ &lt; p &lt; 4 1 - 2 λ .

Square functions associated to Schrödinger operators

I. Abu-Falahah, P. R. Stinga, J. L. Torrea (2011)

Studia Mathematica

We characterize geometric properties of Banach spaces in terms of boundedness of square functions associated to general Schrödinger operators of the form ℒ = -Δ + V, where the nonnegative potential V satisfies a reverse Hölder inequality. The main idea is to sharpen the well known localization method introduced by Z. Shen. Our results can be regarded as alternative proofs of the boundedness in H¹, L p and BMO of classical ℒ-square functions.

Square functions of Calderón type and applications.

Steve Hofmann, John L. Lewis (2001)

Revista Matemática Iberoamericana

We establish L2 and Lp bounds for a class of square functions which arises in the study of singular integrals and boundary value problems in non-smooth domains. As an application, we present a simplified treatment of a class of parabolic smoothing operators which includes the caloric single layer potential on the boundary of certain minimally smooth, non-cylindrical domains.

Currently displaying 101 – 120 of 135