Displaying 61 – 80 of 135

Showing per page

Some footprints of Marcinkiewicz in summability theory

Ferenc Weisz (2011)

Banach Center Publications

Four basic results of Marcinkiewicz are presented in summability theory. We show that setting out from these theorems many mathematicians have reached several nice results for trigonometric, Walsh- and Ciesielski-Fourier series.

Some integral and maximal operators related to starlike sets

Sagun Chanillo, David Watson, Richard Wheeden (1993)

Studia Mathematica

We prove two-weight norm estimates for fractional integrals and fractional maximal functions associated with starlike sets in Euclidean space. This is seen to include general positive homogeneous fractional integrals and fractional integrals on product spaces. We consider both weak type and strong type results, and we show that the conditions imposed on the weight functions are fairly sharp.

Some multiplier theorems on the sphere.

R. O. Gandulfo, G. Gigante (2000)

Collectanea Mathematica

The n-dimensional sphere, E, can be seen as the quotient between the group of rotations of R n+1 and the subgroup of all the rotations that fix one point. Using representation theory, one can see that any operator on Lp (Sigma n) that commutes with the action of the group of rotations (called multiplier) may be associated with a sequence of complex numbers. We prove that, if a certain discrete derivative of a given sequence represents a bounded multiplier on LP (E 1), then the given sequence represents...

Some new Hardy spaces L ² H R q ( ² + × ² + ) (0 < q ≤ 1)

Dachun Yang (1994)

Studia Mathematica

For 0 < q ≤ 1, the author introduces a new Hardy space L ² H q ( ² + × ² + ) on the product domain, and gives its generalized Lusin-area characterization. From this characterization, a φ-transform characterization in M. Frazier and B. Jawerth’s sense is deduced.

Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations

Dachun Yang (2005)

Studia Mathematica

Let ( X , ϱ , μ ) d , θ be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x’,y ∈ X, | ϱ ( x , y ) - ϱ ( x ' , y ) | C ϱ ( x , x ' ) θ [ ϱ ( x , y ) + ϱ ( x ' , y ) ] 1 - θ , and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X, μ ( y X : ϱ ( x , y ) < r ) r d . Let ε ∈ (0,θ], |s| < ε and maxd/(d+ε),d/(d+s+ε) < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces F q s ( X ) and establishes their frame characterizations by first establishing a Plancherel-Pólya-type inequality...

Some new light on a few classical results

Ciprian Demeter, Prabath Silva (2015)

Colloquium Mathematicae

The purpose of this paper is to describe a unified approach to proving vector-valued inequalities without relying on the full strength of weighted theory. Our applications include the Fefferman-Stein and Córdoba-Fefferman inequalities, as well as the vector-valued Carleson operator. Using this approach we also produce a proof of the boundedness of the classical bi-parameter multiplier operators, which does not rely on product theory. Our arguments are inspired by the vector-valued restricted type...

Some new spaces of Besov and Triebel-Lizorkin type on homogeneous spaces

Yongsheng Han, Dachun Yang (2003)

Studia Mathematica

New norms for some distributions on spaces of homogeneous type which include some fractals are introduced. Using inhomogeneous discrete Calderón reproducing formulae and the Plancherel-Pólya inequalities on spaces of homogeneous type, the authors prove that these norms give a new characterization for the Besov and Triebel-Lizorkin spaces with p, q > 1 and can be used to introduce new inhomogeneous Besov and Triebel-Lizorkin spaces with p, q ≤ 1 on spaces of homogeneous type. Moreover, atomic...

Some notes on embedding for anisotropic Sobolev spaces

Hongliang Li, Quinxiu Sun (2011)

Czechoslovak Mathematical Journal

In this paper, we prove new embedding theorems for generalized anisotropic Sobolev spaces, W Λ p , q ( w ) r 1 , , r n and W X r 1 , , r n , where Λ p , q ( w ) is the weighted Lorentz space and X is a rearrangement invariant space in n . The main methods used in the paper are based on some estimates of nonincreasing rearrangements and the applications of B p weights.

Currently displaying 61 – 80 of 135