Displaying 61 – 80 of 324

Showing per page

Characterizations of Gabor Systems via the Fourier transform.

Wojciech Czaja (2000)

Collectanea Mathematica

We give characterizations of orthogonal families, tight frames and orthonormal bases of Gabor systems. The conditions we propose are stated in terms of equations for the Fourier transforms of the Gabor system's generating functions.

Closure of dilates of shift-invariant subspaces

Moisés Soto-Bajo (2013)

Open Mathematics

Let V be any shift-invariant subspace of square summable functions. We prove that if for some A expansive dilation V is A-refinable, then the completeness property is equivalent to several conditions on the local behaviour at the origin of the spectral function of V, among them the origin is a point of A*-approximate continuity of the spectral function if we assume this value to be one. We present our results also in a more general setting of A-reducing spaces. We also prove that the origin is a...

Connectivity, homotopy degree, and other properties of α-localized wavelets on R.

Gustavo Garrigós (1999)

Publicacions Matemàtiques

In this paper, we study general properties of α-localized wavelets and multiresolution analyses, when 1/2 < α ≤ ∞. Related to the latter, we improve a well-known result of A. Cohen by showing that the correspondence m → φ' = Π1∞ m(2−j ·), between low-pass filters in Hα(T) and Fourier transforms of α-localized scaling functions (in Hα(R)), is actually a homeomorphism of topological spaces. We also show that the space of such filters can be regarded as a connected infinite dimensional manifold,...

Construction of functions with prescribed Hölder and chirp exponents.

Stéphane Jaffard (2000)

Revista Matemática Iberoamericana

We show that the Hölder exponent and the chirp exponent of a function can be prescribed simultaneously on a set of full measure, if they are both lower limits of continuous functions. We also show that this result is optimal: In general, Hölder and chirp exponents cannot be prescribed outside a set of Hausdorff dimension less than one. The direct part of the proof consists in an explicit construction of a function determined by its orthonormal wavelet coefficients; the optimality is the direct consequence...

Construction of Non-MSF Non-MRA Wavelets for L²(ℝ) and H²(ℝ) from MSF Wavelets

Aparna Vyas (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Considering symmetric wavelet sets consisting of four intervals, a class of non-MSF non-MRA wavelets for L²(ℝ) and dilation 2 is obtained. In addition, we obtain a family of non-MSF non-MRA H²-wavelets which includes the one given by Behera [Bull. Polish Acad. Sci. Math. 52 (2004), 169-178].

Continuous wavelet transform on semisimple Lie groups and inversion of the Abel transform and its dual.

K. Trimèche (1996)

Collectanea Mathematica

In this work we define and study wavelets and continuous wavelet transform on semisimple Lie groups G of real rank l. We prove for this transform Plancherel and inversion formulas. Next using the Abel transform A on G and its dual A*, we give relations between the continuous wavelet transform on G and the classical continuous wavelet transform on Rl, and we deduce the formulas which give the inverse operators of the operators A and A*.

Currently displaying 61 – 80 of 324