Sets of uniqueness
In the context of the spaces of homogeneous type, given a family of operators that look like approximations of the identity, new sharp maximal functions are considered. We prove a good-λ inequality for Muckenhoupt weights, which leads to an analog of the Fefferman-Stein estimate for the classical sharp maximal function. As a consequence, we establish weighted norm estimates for certain singular integrals, defined on irregular domains, with Hörmander conditions replaced by some estimates which do...
A (K,Λ) shift-modulation invariant space is a subspace of L²(G) that is invariant under translations along elements in K and modulations by elements in Λ. Here G is a locally compact abelian group, and K and Λ are closed subgroups of G and the dual group Ĝ, respectively. We provide a characterization of shift-modulation invariant spaces when K and Λ are uniform lattices. This extends previous results known for . We develop fiberization techniques and suitable range functions adapted to LCA groups...
It is shown that a Sidon set cannot have an integer cluster point in the Bohr topology.
Let be a compact abelian group and the dual group. It is shown that if is a Sidon set, then the interpolating measures on can be obtained as mean of Riesz products. If is a Sidon set tending to infinity, is of first type. Our approach yields in fact elementary proofs of certain characterizations of Sidonicity obtained in G. Pisier, C.R.A.S., Paris Ser. A, 286 (1978), 1003–1006 – Math. Anal. and Appl., Part B, Advances in Math., Suppl. Sts. vol. 7, 685-726 – preprint, using random Fourier...
Sidon sets for the disk polynomial measure algebra (the continuous disk polynomial hypergroup) are described completely in terms of classical Sidon sets for the circle; an analogue of the F. and M. Riesz theorem is also proved.
On étend au cadre des groupes abéliens localement compacts certains résultats obtenus notamment par G. Debs, R. Kaufman, A. Kechris, A. Louveau et J. Saint Raymond sur la structure des fermés d’unicité et d’unicité au sens large du cercle unité. On montre également que de très nombreuses familles de compacts issues de l’Analyse Harmonique sont exactement de troisième classe dans la hiérarchie de Baire. Comme application, on donne une démonstration simple de l’existence d’ensembles de Dirichlet qui...