Loading [MathJax]/extensions/MathZoom.js
- Subjects
- 43-XX Abstract harmonic analysis
We consider a family of non-unimodular rank one NA-groups with roots not all positive, and we show that on these groups there exists a distinguished left invariant sub-Laplacian which admits a differentiable functional calculus for every p ≥ 1.
Let be the singular measure on the Heisenberg group supported on the graph of the quadratic function , where is a real symmetric matrix. If , we prove that the operator of convolution by on the right is bounded from to . We also study the type set of the measures , for , where is a cut-off function around the origin on . Moreover, for we characterize the type set of .
A measure is called -improving if it acts by convolution as a bounded operator from to for some q > p. Positive measures which are -improving are known to have positive Hausdorff dimension. We extend this result to complex -improving measures and show that even their energy dimension is positive. Measures of positive energy dimension are seen to be the Lipschitz measures and are characterized in terms of their improving behaviour on a subset of -functions.
- boundedness properties are obtained for operators defined by convolution with measures supported on certain curves on the Heisenberg group. We find the curvature condition for which the type set of these operators can be the full optimal trapezoid with vertices A=(0,0), B=(1,1), C=(2/3,1/2), D=(1/2,1/3). We also give notions of right curvature and left curvature which are not mutually equivalent.
- estimates are obtained for convolution operators by finite measures supported on curves in the Heisenberg group whose tangent vector at the origin is parallel to the centre of the group.
Let be a symmetric space of the noncompact type, with Laplace–Beltrami operator , and let be the -spectrum of . For in
such that , let be the operator on
defined formally as . In this paper, we
obtain operator norm estimates for for all , and show
that these are optimal when is small and when is
bounded below .
We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by , where , w = (w₁,...,wₙ) ∈ ℂⁿ, , and η(w) = η₀(|w|²) with . We characterize the set of pairs (p,q) such that the convolution operator with ν is bounded. We also obtain -improving properties of measures supported on the graph of the function .
Let L be a homogeneous sublaplacian on the 6-dimensional free 2-step nilpotent Lie group on three generators. We prove a theorem of Mikhlin-Hörmander type for the functional calculus of L, where the order of differentiability s > 6/2 is required on the multiplier.
Partant de la représentation de l’algèbre de Lie du groupe (nilpotent, connexe et simplement connexe) par des opérateurs différentiels rationnels dont l’existence est liée à la conjecture de Gelfand et Kirillov et démontrée dans Nghiêm Xuân Hai (Ann. Inst. Fourier, 33-4 (1983), 95–133), on calcule explicitement la transformation de Fourier-Plancherel de . En particulier, on obtient la mesure de Plancherel comme une mesure à densité sur un ouvert de Zariski du spectre antihermitien du centre...
Dans l’algèbre enveloppante d’une algèbre de Lie résoluble, on construit un anneau de Weyl caractéristique, canonique et maximal. On peut alors représenter algébriquement l’algèbre de Lie comme des dérivations de cet anneau de Weyl à condition d’effacer un 2-cocycle canonique d’obstruction. Lorsque l’on utilise la représentation de Schrödinger de l’anneau de Weyl, on peut introduire une primitive analytique du 2-cocycle et obtenir une représentation de l’algèbre de Lie par des opérateurs différentiels...
Currently displaying 1 –
20 of
75