Holomorphic representation theory. I.
The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and Triebel-Lizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials tα, related to classical fractional integral and derivative operators and Besov and Triebel-Lizorkin spaces.
This paper considers the Lipschitz subalgebras of a homogeneous algebra on the circle. Interpolation space theory is used to derive estimates for the multiplier norm on closed primary ideals in , . From these estimates the Ditkin and Analytic Ditkin conditions for follow easily. Thus the well-known theory of (regular) Banach algebras satisfying the Ditkin condition applies to as does the theory developed in part I of this series which requires the Analytic Ditkin condition.Examples are discussed...
Let S be a Rees semigroup, and let ℓ¹(S) be its convolution semigroup algebra. Using Morita equivalence we show that bounded Hochschild homology and cohomology of ℓ¹(S) are isomorphic to those of the underlying discrete group algebra.
Let A and B be semisimple commutative Banach algebras with bounded approximate identities. We investigate the problem of extending a homomorphism φ: A → B to a homomorphism of the multiplier algebras M(A) and M(B) of A and B, respectively. Various sufficient conditions in terms of B (or B and φ) are given that allow the construction of such extensions. We exhibit a number of classes of Banach algebras to which these criteria apply. In addition, we prove a polar decomposition for homomorphisms from...
We prove that, for a distinguished laplacian on an Iwasawa AN group corresponding to a complex semisimple Lie group, a Hörmander type multiplier theorem holds. Our argument is based on Littlewood-Paley theory.
Let X be a Polish space, and let be a sequence of hereditary subsets of K(X) (the space of compact subsets of X). We give a general criterion which allows one to decide whether is a true subset of K(X). We apply this criterion to show that several natural families of thin sets from harmonic analysis are true .
For every closed subset C in the dual space of the Heisenberg group we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra and we show that in general for two closed subsets of the product of and is different from .
We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.