Ein p-adisches Integral und seine Anwendungen I.
Utilizing elementary properties of convergence of numerical sequences we prove Nikodym, Banach, Orlicz-Pettis type theorems
On montre que les produits de Riesz sur le tore sont des mesures ergodiques sous une condition de lacunarité pour les fréquences, indépendamment de toute propriété arithmétique, et que cette condition est la meilleure possible de ce point de vue. On établit un critère analogue pour la propriété de pureté discutés précédemment par B. Host et l’auteur, ce qui fournit l’exemple d’une mesure pure étrangère à toutes ses translatées et en particulier non ergodique.
On étudie les mesures définies sur par les produits , , entier, . Étant données deux telles mesures on donne des conditions assurant soit qu’elles sont étrangères, soit que l’une est absolument continue par rapport à l’autre. On donne une minoration de la dimension de Hausdorff des boréliens qui portent une telle mesure. On montre que certaines séries convergent presque partout par rapport à ces mesures. On en déduit, par exemple, que les ensemblesont 1 pour dimension de Hausdorff. On étend...
Let G be a compact abelian group with dual group Γ and let ε > 0. A set E ⊂ Γ is a “weak ε-Kronecker set” if for every φ:E → there exists x in the dual of Γ such that |φ(γ)- γ(x)| ≤ ε for all γ ∈ E. When ε < √2, every bounded function on E is known to be the restriction of a Fourier-Stieltjes transform of a discrete measure. (Such sets are called I₀.) We show that for every infinite set E there exists a weak 1-Kronecker subset F, of the same cardinality as E, provided there are not “too many”...