The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Necessary condition for measures which are ( L q , L p ) multipliers

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2009)

Annales mathématiques Blaise Pascal

Let G be a locally compact group and ρ the left Haar measure on G . Given a non-negative Radon measure μ , we establish a necessary condition on the pairs q , p for which μ is a multiplier from L q G , ρ to L p G , ρ . Applied to n , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].When G is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.

Currently displaying 1 – 5 of 5

Page 1