The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Weak amenability of general measure algebras

Javad Laali, Mina Ettefagh (2008)

Colloquium Mathematicae

We study the weak amenability of a general measure algebra M(X) on a locally compact space X. First we show that not all general measure multiplications are separately weak* continuous; moreover, under certain conditions, weak amenability of M(X)** implies weak amenability of M(X). The main result of this paper states that there is a general measure algebra M(X) such that M(X) and M(X)** are weakly amenable without X being a discrete topological space.

Weak amenability of weighted group algebras on some discrete groups

Varvara Shepelska (2015)

Studia Mathematica

Weak amenability of ℓ¹(G,ω) for commutative groups G was completely characterized by N. Gronbaek in 1989. In this paper, we study weak amenability of ℓ¹(G,ω) for two important non-commutative locally compact groups G: the free group ₂, which is non-amenable, and the amenable (ax + b)-group. We show that the condition that characterizes weak amenability of ℓ¹(G,ω) for commutative groups G remains necessary for the non-commutative case, but it is sufficient neither for ℓ¹(₂,ω) nor for ℓ¹((ax + b),ω)...

Weak* properties of weighted convolution algebras II

Sandy Grabiner (2010)

Studia Mathematica

We show that if ϕ is a continuous homomorphism between weighted convolution algebras on ℝ⁺, then its extension to the corresponding measure algebras is always weak* continuous. A key step in the proof is showing that our earlier result that normalized powers of functions in a convolution algebra on ℝ⁺ go to zero weak* is also true for most measures in the corresponding measure algebra. For some algebras, we can determine precisely which measures have normalized powers converging to zero weak*. We...

Weighted measure algebras and uniform norms

S. J. Bhatt, H. V. Dedania (2006)

Studia Mathematica

Let ω be a weight on an LCA group G. Let M(G,ω) consist of the Radon measures μ on G such that ωμ is a regular complex Borel measure on G. It is proved that: (i) M(G,ω) is regular iff M(G,ω) has unique uniform norm property (UUNP) iff L¹(G,ω) has UUNP and G is discrete; (ii) M(G,ω) has a minimum uniform norm iff L¹(G,ω) has UUNP; (iii) M₀₀(G,ω) is regular iff M₀₀(G,ω) has UUNP iff L¹(G,ω) has UUNP, where M₀₀(G,ω) := {μ ∈ M(G,ω) : μ̂ = 0 on Δ(M(G,ω))∖Δ(L¹(G,ω))}.

Currently displaying 1 – 6 of 6

Page 1