Induced Representations and Hypergroup Homomorphisms.
Let L¹(G)** be the second dual of the group algebra L¹(G) of a locally compact group G. We study the question of involutions on L¹(G)**. A new class of subamenable groups is introduced which is universal for all groups. There is no involution on L¹(G)** for a subamenable group G.
There are several algebras associated with a locally compact group 𝓖 which determine 𝓖 in the category of topological groups, such as L¹(𝓖), M(𝓖), and their second duals. In this article we add a fairly large family of locally convex algebras to this list. More precisely, we show that for two infinite locally compact groups 𝓖₁ and 𝓖₂, there are infinitely many locally convex topologies τ₁ and τ₂ on the measure algebras M(𝓖₁) and M(𝓖₂), respectively, such that (M(𝓖₁),τ₁)** is isometrically...
A linear map T from a Banach algebra A into another B preserves zero products if T(a)T(b) = 0 whenever a,b ∈ A are such that ab = 0. This paper is mainly concerned with the question of whether every continuous linear surjective map T: A → B that preserves zero products is a weighted homomorphism. We show that this is indeed the case for a large class of Banach algebras which includes group algebras. Our method involves continuous bilinear maps ϕ: A × A → X (for some Banach space X) with the property...
We first study the behavior of weights on a simply connected nilpotent Lie group G. Then for a subalgebra A of L¹(G) containing the Schwartz algebra 𝓢(G) as a dense subspace, we characterize all closed two-sided ideals of A whose hull reduces to one point which is a character.
Let p,q be positive integers. The groups and act on the Heisenberg group canonically as groups of automorphisms, where is the vector space of all complex p × q matrices. The associated orbit spaces may be identified with and respectively, being the cone of positive semidefinite matrices and the Weyl chamber . In this paper we compute the associated convolutions on and explicitly, depending on p. Moreover, we extend these convolutions by analytic continuation to series of convolution...