Inductive extreme non-Arens regularity of the Fourier algebra A(G)
Let G be a non-discrete locally compact group, A(G) the Fourier algebra of G, VN(G) the von Neumann algebra generated by the left regular representation of G which is identified with A(G)*, and WAP(Ĝ) the space of all weakly almost periodic functionals on A(G). We show that there exists a directed family ℋ of open subgroups of G such that: (1) for each H ∈ ℋ, A(H) is extremely non-Arens regular; (2) and ; (3) and it is a WAP-strong inductive union in the sense that the unions in (2) are strongly...