Paley-Wiener Type Theorems on Harmonic Extensions of H-Type Groups.
We adapt the homogeneous Littlewood-Paley decomposition on the Heisenberg group constructed by H. Bahouri, P. Gérard et C.-J. Xu in [4] to the inhomogeneous case, which enables us to build paraproduct operators, similar to those defined by J.-M. Bony in [5]; although there is no simple formula for the Fourier transform of the product of two functions, some spectral localization properties of the classical case are preserved on the Heisenberg group after the product has been taken. Using the dyadic...