On Integrable Representations.
The present paper is a contribution to fill in a gap existing between the theory of topological vector spaces and that of topological abelian groups. Topological vector spaces have been extensively studied as part of Functional Analysis. It is natural to expect that some important and elegant theorems about topological vector spaces may have analogous versions for abelian topological groups. The main obstruction to get such versions is probably the lack of the notion of convexity in the framework...
Let G be a locally compact group and B(G) the Fourier-Stieltjes algebra of G. Pursuing our investigations of power bounded elements in B(G), we study the extension property for power bounded elements and discuss the structure of closed sets in the coset ring of G which appear as 1-sets of power bounded elements. We also show that L¹-algebras of noncompact motion groups and of noncompact IN-groups with polynomial growth do not share the so-called power boundedness property. Finally, we give a characterization...
It is proved that every real metrizable locally convex space which is not nuclear contains a closed additive subgroup K such that the quotient group G = (span K)/K admits a non-trivial continuous positive definite function, but no non-trivial continuous character. Consequently, G cannot satisfy any form of the Bochner theorem.