A Characterization of a Class of Locally Compact Abelian Groups via Korovkin Theory.
For a locally compact, abelian group , we study the space of functions on belonging locally to the Fourier algebra and with -behavior at infinity. We give an abstract characterization of the family of spaces abelian by its hereditary properties.
Let and be representations of a topological group G on Banach spaces X and Y, respectively. We investigate the continuity of the linear operators Φ: X → Y with the property that for each t ∈ G in terms of the invariant vectors in Y and the automatic continuity of the invariant linear functionals on X.