Second degree polynomials and the fundamental theorems of harmonic analysis.
Relations between spectral synthesis in the Fourier algebra A(G) of a compact group G and the concept of operator synthesis due to Arveson have been studied in the literature. For an A(G)-submodule X of VN(G), X-synthesis in A(G) has been introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To any such X we associate a -submodule X̂ of ℬ(L²(G)) (where is the weak-* Haagerup tensor product ), define the concept of X̂-operator synthesis and prove that a closed set E...
For locally compact, second countable, type I groups G, we characterize all closed (two-sided) translation invariant subspaces of L²(G). We establish a similar result for K-biinvariant L²-functions (K a fixed maximal compact subgroup) in the context of semisimple Lie groups.
Soit , l’espace de Banach des fonctions continues sur qui sont parties réelles de fonctions de l’algèbre du disque . On étudie les ensembles de de synthèse pour et l’algèbre des multiplicateurs de . On en déduit des théorèmes d’approximation dans par des produits de Blaschke.