Page 1

Displaying 1 – 3 of 3

Showing per page

Haar system on a product of zero-dimensional compact groups

Sergei Lukomskii (2011)

Open Mathematics

In this work, we study the problem of constructing Haar bases on a product of arbitrary compact zero-dimensional Abelian groups. A general scheme for the construction of Haar functions is given for arbitrary dimension. For dimension d=2, we describe all Haar functions.

Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients

Péter Simon, Ferenc Weisz (1997)

Studia Mathematica

Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) ( k = 1 j = 1 | f ̂ ( k , j ) | p ( k j ) p - 2 ) 1 / p C p f H * * p (1/2 < p≤2) where f belongs to the Hardy space H * * p ( G m × G s ) defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.

Currently displaying 1 – 3 of 3

Page 1