Transformation de Fourier et majoration de sommes exponentielles
Dans cet article on étudie en premier lieu la résolvante (le noyau de Green) d’un opérateur agissant sur un arbre localement fini. Ce noyau est supposé invariant par un groupe d’automorphismes de l’arbre. On donne l’expression générique de cette résolvante et on établit des simplifications sous différentes hypothèses sur .En second lieu on introduit la transformation de Poisson qui associe à une mesure additive finie sur l’espace des bouts de l’arbre une fonction propre de l’ opérateur. On...
We develop methods for studying transition operators on metric spaces that are invariant under a co-compact group which acts properly. A basic requirement is a decomposition of such operators with respect to the group orbits. We then introduce reduced transition operators on the compact factor space whose norms and spectral radii are upper bounds for the Lp-norms and spectral radii of the original operator. If the group is amenable then the spectral radii of the original and reduced operators coincide,...
It is shown that if is a connected metrizable compact Abelian group and , any (possibly discontinuous) translation invariant linear form on is a scalar multiple of the Haar measure. This result extends the theorem of G.H. Meisters and W.M. Schmidt (J. Funct. Anal. 13 (1972), 407-424) on . Our method permits in fact to consider any superreflexive translation invariant Banach lattice on , which is the adopted point of view. We study the representation of an element of this invariant lattice...
The single underlying method of averaging the wavelet functional over translates yields first a new completeness criterion for orthonormal wavelet systems, and then a unified treatment of known results on characterization of wavelets on the Fourier transform side, on preservation of frame bounds by oversampling, and on equivalence of affine and quasiaffine frames. The method applies to multiwavelet systems in all dimensions, to dilation matrices that are in some cases not expanding, and to dual...