Displaying 901 – 920 of 1716

Showing per page

On optimal matching measures for matching problems related to the Euclidean distance

José Manuel Mazón, Julio Daniel Rossi, Julián Toledo (2014)

Mathematica Bohemica

We deal with an optimal matching problem, that is, we want to transport two measures to a given place (the target set) where they will match, minimizing the total transport cost that in our case is given by the sum of two different multiples of the Euclidean distance that each measure is transported. We show that such a problem has a solution with an optimal matching measure supported in the target set. This result can be proved by an approximation procedure using a p -Laplacian system. We prove...

On periodic solution of a nonlinear beam equation

Marie Kopáčková (1983)

Aplikace matematiky

the existence of an ω -periodic solution of the equation 2 u t 2 + α 4 u x 4 + γ 5 u x 4 t - γ ˜ 3 u x 2 t + δ u t - β + 0 n u x 2 ( · , ξ ) d ξ + σ 0 n 2 u x t ( · , ξ ) u x ( · , ξ ) d ξ 2 u x 2 = f sarisfying the boundary conditions u ( t , 0 ) = u ( t , π ) = 2 u x 2 t , 0 = 2 u x 2 t , π = 0 is proved for every ω -periodic function f C 0 , ω , L 2 .

On radially symmetric solutions of some chemotaxis system

Robert Stańczy (2009)

Banach Center Publications

This paper contains some results concerning self-similar radial solutions for some system of chemotaxis. This kind of solutions describe asymptotic profiles of arbitrary solutions with small mass. Our approach is based on a fixed point analysis for an appropriate integral operator acting on a suitably defined convex subset of some cone in the space of bounded and continuous functions.

Currently displaying 901 – 920 of 1716