On the Eigenvalue problem of T'Hooft.
We present an existence theorem for integral equations of Urysohn-Volterra type involving fuzzy set valued mappings. A fixed point theorem due to Schauder is the main tool in our analysis.
We prove some existence theorems for nonlinear integral equations of the Urysohn type and Volterra type , , where f and φ are functions with values in Banach spaces. Our fundamental tools are: measures of noncompactness and properties of the Henstock-Kurzweil integral.
In this paper we investigate weakly continuous solutions of some integral equations in Banach spaces. Moreover, we prove a fixed point theorem which is very useful in our considerations.
In this paper we use the Schauder fixed point theorem and methods of integral inequalities in order to prove a result on the existence, uniqueness and parametric dependence on the coefficients of the solution processes in McShane stochastic integral equations.