Displaying 81 – 100 of 152

Showing per page

Existence for nonconvex integral inclusions via fixed points

Aurelian Cernea (2003)

Archivum Mathematicum

We consider a nonconvex integral inclusion and we prove a Filippov type existence theorem by using an appropiate norm on the space of selections of the multifunction and a contraction principle for set-valued maps.

Existence of nonnegative periodic solutions in neutral integro-differential equations with functional delay

Imene Soulahia, Abdelouaheb Ardjouni, Ahcene Djoudi (2015)

Commentationes Mathematicae Universitatis Carolinae

The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay x ' ( t ) = - t - τ ( t ) t a ( t , s ) g ( x ( s ) ) d s + d d t Q ( t , x ( t - τ ( t ) ) ) + G ( t , x ( t ) , x ( t - τ ( t ) ) ) . We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for τ , g , a , Q and G to show that this sum of mappings fits into the framework of a modification of Krasnoselskii’s...

Existence of periodic solutions for first-order totally nonlinear neutral differential equations with variable delay

Abdelouaheb Ardjouni, Ahcène Djoudi (2014)

Commentationes Mathematicae Universitatis Carolinae

We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay x ' ( t ) = - a ( t ) h ( x ( t ) ) + c ( t ) x ' ( t - g ( t ) ) Q ' ( x ( t - g ( t ) ) ) + G ( t , x ( t ) , x ( t - g ( t ) ) ) , has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits...

Currently displaying 81 – 100 of 152