Polynomial spline collocation methods for second-order Volterra integrodifferential equations.
Resistance to chemotherapies, particularly to anticancer treatments, is an increasing medical concern. Among the many mechanisms at work in cancers, one of the most important is the selection of tumor cells expressing resistance genes or phenotypes. Motivated by the theory of mutation-selection in adaptive evolution, we propose a model based on a continuous variable that represents the expression level of a resistance gene (or genes, yielding a phenotype) influencing in healthy and tumor cells birth/death...
We investigate the existence and multiplicity of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with nonnegative nonlinearities which can be nonsingular or singular functions, subject to multi-point boundary conditions that contain fractional derivatives.
An existence theorem is proved for the scalar convolution type integral equation .
Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We obtain a partial characterization and a uniqueness-type result for solutions of the general linear equation in the class of probability distribution functions.
Démonstration d’un théorème d’existence de la solution du problème de Cauchy pour les équations intégro-différentielles de la dynamique d’un gaz relativiste soumis à son propre champ de gravitation : les inégalités énergétiques des sytèmes hyperboliques et un théorème de point fixe sont utilisés. Les résultats sont obtenus dans des espaces de Sobolev pour le champ de gravitation et pour le produit par de la fonction de distribution (, vecteur temporel).