Nonlinear hyperbolic equations with dissipative temporal and spatial non-local memory.
Nonlinear nonlocal parabolic equations modeling the evolution of density of mutually interacting particles are considered. The inertial type nonlinearity is quadratic and nonlocal while the diffusive term, also nonlocal, is anomalous and fractal, i.e., represented by a fractional power of the Laplacian. Conditions for global in time existence versus finite time blow-up are studied. Self-similar solutions are constructed for certain homogeneous initial data. Monte Carlo approximation schemes by interacting...
This is a survey of results on the long-time behavior of solutions to phase-field models and related problems. The central idea is based on several non-standard applications of the Łojasiewicz-Simon theory.
We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed...
We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.
We study an integro-differential operator Φ: H̅¹ → L² of Fredholm type and give sufficient conditions for Φ to be a diffeomorphism. An application to functional equations is presented.
In the present paper we study some basic qualitative properties of solutions of a nonlinear parabolic integrodifferential equation of Barbashin type which occurs frequently in applications. The fundamental integral inequality with explicit estimate is used to establish the results.