Displaying 101 – 120 of 157

Showing per page

On stability and robust stability of positive linear Volterra equations in Banach lattices

Satoru Murakami, Pham Ngoc (2010)

Open Mathematics

We study positive linear Volterra integro-differential equations in Banach lattices. A characterization of positive equations is given. Furthermore, an explicit spectral criterion for uniformly asymptotic stability of positive equations is presented. Finally, we deal with problems of robust stability of positive systems under structured perturbations. Some explicit stability bounds with respect to these perturbations are given.

On the Aronszajn property for integral equations in Banach space

Stanisław Szufla (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For the integral equation (1) below we prove the existence on an interval J = [ 0 , a ] of a solution x with values in a Banach space E , belonging to the class L p ( J , E ) , p > 1 . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.

On the Dirichlet and Neumann problems in multi-dimensional cone

Vladimir Vasilyev (2014)

Mathematica Bohemica

We consider an elliptic pseudodifferential equation in a multi-dimensional cone, and using the wave factorization concept for an elliptic symbol we describe a general solution of such equation in Sobolev-Slobodetskii spaces. This general solution depends on some arbitrary functions, their quantity being determined by an index of the wave factorization. For identifying these arbitrary functions one needs some additional conditions, for example, boundary conditions. Simple boundary value problems,...

On the existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals

Aneta Sikorska-Nowak (2004)

Annales Polonici Mathematici

We prove some existence theorems for nonlinear integral equations of the Urysohn type x ( t ) = φ ( t ) + λ 0 a f ( t , s , x ( s ) ) d s and Volterra type x ( t ) = φ ( t ) + 0 t f ( t , s , x ( s ) ) d s , t I a = [ 0 , a ] , where f and φ are functions with values in Banach spaces. Our fundamental tools are: measures of noncompactness and properties of the Henstock-Kurzweil integral.

On the semilinear integro-differential nonlocal Cauchy problem

Piotr Majcher, Magdalena Roszak (2005)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we prove an existence theorem for the pseudo-non-local Cauchy problem x ' ( t ) + A x ( t ) = f ( t , x ( t ) , t t k ( t , s , x ( s ) ) d s ) , x₀(t₀) = x₀ - g(x), where A is the infinitesimal generator of a C₀ semigroup of operator T ( t ) t > 0 on a Banach space. The functions f,g are weakly-weakly sequentially continuous and the integral is taken in the sense of Pettis.

On the structure of the set of solutions of a Volterra integral equation in a Banach space

Krzysztof Czarnowski (1994)

Annales Polonici Mathematici

The set of solutions of a Volterra equation in a Banach space with a Carathéodory kernel is proved to be an δ , in particular compact and connected. The kernel is not assumed to be uniformly continuous with respect to the unknown function and the characterization is given in terms of a B₀-space of continuous functions on a noncompact domain.

Currently displaying 101 – 120 of 157