Geometrical and topological properties of bumps and starlike bodies in Banach spaces.
We give a short survey on some fixed point theorems which are generalizations of the classical Banach-Caccioppoli principle of contractive mappings. All these results are gathered in three theorems about existence and uniqueness of fixed points for operators which act in K-metric or K-normed linear spaces and, in particular, in local convex spaces and scales of Banach spaces. Three fixed point theorems presented in this article cover numerous applications in numerical methods, theory of integral...
We introduce various notions of large-scale isoperimetric profile on a locally compact, compactly generated amenable group. These asymptotic quantities provide measurements of the degree of amenability of the group. We are particularly interested in a class of groups with exponential volume growth which are the most amenable possible in that sense. We show that these groups share various interesting properties such as the speed of on-diagonal decay of random walks, the vanishing of the reduced first...
This survey features some recent developments concerning the bounded approximation property in Banach spaces. As a central theme, we discuss the weak bounded approximation property and the approximation property which is bounded for a Banach operator ideal. We also include an overview around the related long-standing open problem: Is the approximation property of a dual Banach space always metric?
We survey a combinatorial framework for studying subsequences of a given sequence in a Banach space, with particular emphasis on weakly-null sequences. We base our presentation on the crucial notion of barrier introduced long time ago by Nash-Williams. In fact, one of the purposes of this survey is to isolate the importance of studying mappings defined on barriers as a crucial step towards solving a given problem that involves sequences in Banach spaces. We focus our study on various forms of ?partial...
Our understanding of the interplay between Poincaré inequalities, Sobolev inequalities and the geometry of the underlying space has changed considerably in recent years. These changes have simultaneously provided new insights into the classical theory and allowed much of that theory to be extended to a wide variety of different settings. This paper reviews some of these new results and techniques and concludes with an example on the preservation of Sobolev spaces by the maximal function.[Proceedings...
The aim of this paper is to review the state-of-the-art of recent research concerning the numerical index of Banach spaces, by presenting some of the results found in the last years and proposing a number of related open problems.
L’objet de cet article est de prouver des théorèmes du genre suivant : “Soient un opérateur différentiel sur , une fonction à valeurs réelles, un nombre réel et une distribution à support compact : alors, si , ” ; l’espace est ici l’espace de Sobolev “d’ordre variable” associé à ; bien entendu, il faut des hypothèses sur , et . Les cas traités sont :1) certains opérateurs à coefficients variables déjà considérés dans le chapitre VIII du livre de L. Hörmander ;2) tous les opérateurs...
This is a short survey on some recent as well as classical results and open problems in smoothness and renormings of Banach spaces. Applications in general topology and nonlinear analysis are considered. A few new results and new proofs are included. An effort has been made that a young researcher may enjoy going through it without any special pre-requisites and get a feeling about this area of Banach space theory. Many open problems of different level of difficulty are discussed. For the reader...
We survey the recent investigations on approximate amenability/contractibility and pseudo-amenability/contractibility for Banach algebras. We will discuss the core problems concerning these notions and address the significance of any solutions to them to the development of the field. A few new results are also included.
We survey some recent developments in the theory of Fréchet spaces and of their duals. Among other things, Section 4 contains new, direct proofs of properties of, and results on, Fréchet spaces with the density condition, and Section 5 gives an account of the modern theory of general Köthe echelon and co-echelon spaces. The final section is devoted to the developments in tensor products of Fréchet spaces since the negative solution of Grothendieck?s ?problème des topologies?.