Stability in Banach spaces.
Geometric structure of Cesàro function spaces , where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that contains isomorphic and complemented copies of -spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces .
On étudie les convexes compacts , tels que pour toute partie de , l’ensemble des fonctions affines continues sur , comprises entre 0 et 1, et nulles sur , ait un plus grand élément. On caractérise ces convexes compacts comme ceux dont des quotients affines convenables sont des chapeaux universels de cônes à base compacte. On a une “complémentation naturelle” sur le treillis des faces exposés de , et des liens remarquables entre ce treillis et l’espace des fonctions affines continues sur .