Coarse homology theories.
Take finitely many topological spaces and for each pair of these spaces choose a pair of corresponding closed subspaces that are identified by a homeomorphism. We note that this gluing procedure does not guarantee that the building pieces, or the gluings of some pieces, are embedded in the space obtained by putting together all given ingredients. Dually, we show that a certain sufficient condition, called the cocycle condition, is also necessary to guarantee sheaf-like properties of surjective multi-pullbacks...
The spaces of entire functions represented by Dirichlet series have been studied by Hussein and Kamthan and others. In the present paper we consider the space of all entire functions defined by vector-valued Dirichlet series and study the properties of a sequence space which is defined using the type of an entire function represented by vector-valued Dirichlet series. The main result concerns with obtaining the nature of the dual space of this sequence space and coefficient multipliers for some...
We study orthogonal uniform convexity, a geometric property connected with property (β) of Rolewicz, P-convexity of Kottman, and the fixed point property (see [19, [20]). We consider the coefficient of orthogonal convexity in Köthe spaces and Köthe-Bochner spaces.
Nous calculons la cohomologie de Hochschild directement sur les graphes de Kontsevich. Celle-ci est localisée sur les graphes totalement antisymétriques ayant autant de pieds que de pattes. La considération de cette cohomologie permet de réinterpréter l’équation de formalité pour l’espace .
We investigate conditions under which the projective and the injective topologies coincide on the tensor product of two Köthe echelon or coechelon spaces. A major tool in the proof is the characterization of the επ-continuity of the tensor product of two diagonal operators from to . Several sharp forms of this result are also included.