Functionals Close to Each Other.
Let A be a complex, commutative Banach algebra and let be the structure space of A. Assume that there exists a continuous homomorphism h:L¹(G) → A with dense range, where L¹(G) is a group algebra of the locally compact abelian group G. The main results of this note can be summarized as follows: (a) If every weakly almost periodic functional on A with compact spectra is almost periodic, then the space is scattered (i.e., has no nonempty perfect subset). (b) Weakly almost periodic functionals...
The exponential stability property of an evolutionary process is characterized in terms of the existence of some functionals on certain function spaces. Thus are generalized some well-known results obtained by Datko, Rolewicz, Littman and Van Neerven.
The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher smoothness (C∞) is involved. In this note we survey most of the main results in this area, and indicate many old as well as new open problems.
We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.
We introduce a sort of "local" Morrey spaces and show an existence and uniqueness theorem for the Dirichlet problem in unbounded domains for linear second order elliptic partial differential equations with principal coefficients "close" to functions having derivatives in such spaces.
The distributional -dimensional Jacobian of a map in the Sobolev space which takes values in the sphere can be viewed as the boundary of a rectifiable current of codimension carried by (part of) the singularity of which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary of codimension can be realized as Jacobian of a Sobolev map valued in . In case is polyhedral, the map we construct...