Décomposition microlocale analytique des distributions
Nous dirons qu’un faisceau de groupes abéliens sur un espace topologique est souple si, étant un ouvert de , et des fermés de , toute section de sur à support dans est somme de sections à support dans et . Soit une variété analytique réelle, son fibré cotangent en sphères, le faisceau sur des microfonctions qui proviennent localement sur , de distributions. Nous montrons que le faisceau est souple. En particulier le faisceau sur , quotient des distributions par...
* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.The main results of the paper are: Theorem 1. Let a Banach space E be decomposed into a direct sum of separable and reflexive subspaces. Then for every Hausdorff locally convex topological vector space Z and for every linear continuous bijective operator T : E → Z, the inverse T^(−1) is a Borel map. Theorem 2. Let us assume the continuum hypothesis. If a Banach space E cannot...
Let be a decomposition system for indexed over D, the set of dyadic cubes in , and a finite set E, and let be the corresponding dual functionals. That is, for every , . We study sufficient conditions on Θ,Θ̃ so that they constitute a decomposition system for Triebel-Lizorkin and Besov spaces. Moreover, these conditions allow us to characterize the membership of a distribution f in these spaces by the size of the coefficients , e ∈ E, I ∈ D. Typical examples of such decomposition systems...
Dans ce travail, nous étudions le problème de décomposicion suivant: Étant donnés deux ouverts bornés de Cp, Ω1 et Ω2 (vérifiant certaines conditions) et étant donnée une matrice A(z), carrée d'ordre n, dont les coefficients sont des fonctions holomorphes dans Ω1 ∩ Ω2, ayant une prolongement C∞ à l'adhérence (Ω1 ∩ Ω2), peut-on trouver deux matrices A1(z), A2(z) holomorphes dans Ω1 et Ω2 respectivement et se prolongeant de manière C∞ à (Ω1) et (Ω2) telles que sur Ω1 ∩ Ω2 on aitA = A1A2.
We consider real Banach spaces X for which the quotient algebra (X)/ℐn(X) is finite-dimensional, where ℐn(X) stands for the ideal of inessential operators on X. We show that these spaces admit a decomposition as a finite direct sum of indecomposable subspaces for which is isomorphic as a real algebra to either the real numbers ℝ, the complex numbers ℂ, or the quaternion numbers ℍ. Moreover, the set of subspaces can be divided into subsets in such a way that if and are in different subsets,...
We define tensor product decompositions of E₀-semigroups with a structure analogous to a classical theorem of Beurling. Such decompositions can be characterized by adaptedness and exactness of unitary cocycles. For CCR-flows we show that such cocycles are convergent.
There have been recent attempts to develop the theory of Sobolev spaces on metric spaces that do not admit any differentiable structure. We prove that certain definitions are equivalent. We also define the spaces in the limiting case .
Using some moduli of convexity and smoothness we introduce a function which allows us to measure the deformation of Banach spaces. A few properties of this function are derived and its applicability in the geometric theory of Banach spaces is indicated.
We investigate the deformations of involution and multiplication in a unital C*-algebra when its norm is fixed. Our main result is to present all multiplications and involutions on a given C*-algebra 𝓐 under which 𝓐 is still a C*-algebra when we keep the norm unchanged. For each invertible element a ∈ 𝓐 we also introduce an involution and a multiplication making 𝓐 into a C*-algebra in which a becomes a positive element. Further, we give a necessary and sufficient condition for the center of...
It is well known that one can often construct a star-product by expanding the product of two Toeplitz operators asymptotically into a series of other Toeplitz operators multiplied by increasing powers of the Planck constant h. This is the Berezin-Toeplitz quantization. We show that one can obtain in a similar way in fact any star-product which is equivalent to the Berezin-Toeplitz star-product, by using instead of Toeplitz operators other suitable mappings from compactly supported smooth functions...