Necessary and sufficient conditions for the chain rule in and
We prove necessary and sufficient conditions for the validity of the classical chain rule in the Sobolev space and in the space of functions of bounded variation.
We prove necessary and sufficient conditions for the validity of the classical chain rule in the Sobolev space and in the space of functions of bounded variation.
We collect known and prove new necessary and sufficient conditions for the weighted weak type maximal inequality of the form which extends some known results.
A necessary condition for Kostyuchenko type systems and system of powers to be a basis in (1 ≤ p < +∞) spaces is obtained. In particular, we find a necessary condition for a Kostyuchenko system to be a basis in (1 ≤ p < +∞).
For Tychonoff and an infinite cardinal, let the minimum number of cozero-sets of the Čech-Stone compactification which intersect to (generalizing -defect), and let . Give the compact-open topology. It is shown that , where: is tightness; is the network character; is the Lindel"of number. For example, it follows that, for Čech-complete, . The (apparently new) cardinal functions and are compared with several others.
The Nevanlinna algebras, , of this paper are the variants of classical weighted area Nevanlinna classes of analytic functions on = z ∈ ℂ: |z| < 1. They are F-algebras, neither locally bounded nor locally convex, with a rich duality structure. For s = (α+2)/p, the algebra of analytic functions f: → ℂ such that as |z| → 1 is the Fréchet envelope of . The corresponding algebra of analytic f: → ℂ such that is a complete metric space but fails to be a topological vector space. is also...
We give a new Calderón-Zygmund decomposition for Sobolev spaces on a doubling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincaré inequalities.