Compact operators and approximation spaces
We investigate compact operators between approximation spaces, paying special attention to the limit case. Applications are given to embeddings between Besov spaces.
We investigate compact operators between approximation spaces, paying special attention to the limit case. Applications are given to embeddings between Besov spaces.
The paper establishes necessary and sufficient conditions for compactness of operators acting between general K-spaces, general J-spaces and operators acting from a J-space into a K-space. Applications to interpolation of compact operators are also given.
For p ≥ 1, a subset K of a Banach space X is said to be relatively p-compact if , where p’ = p/(p-1) and . An operator T ∈ B(X,Y) is said to be p-compact if T(Ball(X)) is relatively p-compact in Y. Similarly, weak p-compactness may be defined by considering . It is proved that T is (weakly) p-compact if and only if T* factors through a subspace of in a particular manner. The normed operator ideals of p-compact operators and of weakly p-compact operators, arising from these factorizations,...
We provide examples of nonseparable compact spaces with the property that any continuous image which is homeomorphic to a finite product of spaces has a maximal prescribed number of nonseparable factors.
A small perturbation method is developed and employed to construct frames with compactly supported elements of small shrinking support for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in the presence of a nonnegative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows one, in particular, to construct compactly supported frames for Besov and Triebel-Lizorkin spaces on the sphere, on the interval with...
A bounded closed convex set K in a Banach space X is said to have quasi-normal structure if each bounded closed convex subset H of K for which diam(H) > 0 contains a point u for which ∥u-x∥ < diam(H) for each x ∈ H. It is shown that if the convex sets on the unit sphere in X satisfy this condition (which is much weaker than the assumption that convex sets on the unit sphere are separable), then relative to various weak topologies, the unit ball in X is compact whenever it is countably compact....