Compact elements of Banach Algebras
In this Note we give some compact embedding theorems for Sobolev spaces, related to -tuples of vectors fields of class on .
We characterize compact embeddings of Besov spaces involving the zero classical smoothness and a slowly varying smoothness into Lorentz-Karamata spaces , where is a bounded domain in and is another slowly varying function.
Let Ω be a bounded domain in Rn and denote by idΩ the restriction operator from the Besov space Bpq1+n/p(Rn) into the generalized Lipschitz space Lip(1,-α)(Ω). We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like ek(idΩ) ~ k-1/p if α > max (1 + 2/p + 1/q, 1/p). Our estimates improve previous results by Edmunds and Haroske.
Compact composition operators on , where G is a region in the complex plane, and the spectra of these operators were described by D. Swanton ( Compact composition operators on B(D), Proc. Amer. Math. Soc. 56 (1976), 152-156). In this short note we characterize all compact endomorphisms, not necessarily those induced by composition operators, on , where D is the unit disc, and determine their spectra.
We prove that every weakly compact multiplicative linear continuous map from into is compact. We also give an example which shows that this is not generally true for uniform algebras. Finally, we characterize the spectra of compact composition operators acting on the uniform algebra , where is the open unit ball of an infinite-dimensional Banach space E.
We investigate compact operators between approximation spaces, paying special attention to the limit case. Applications are given to embeddings between Besov spaces.