Continuous extensions of spectral measures
We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is an analytic set such that the canonical projection is finite and proper, then has a right inverse
We study properties of the space ℳ of Borel vector measures on a compact metric space X, taking values in a Banach space E. The space ℳ is equipped with the Fortet-Mourier norm and the semivariation norm ||·||(X). The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space is contained in but not equal to the space (ℳ,||·||(X))*. We obtain a representation of the continuous functionals on...
We determine the convolution operators on the real analytic functions in one variable which admit a continuous linear right inverse. The characterization is given by means of a slowly decreasing condition of Ehrenpreis type and a restriction of hyperbolic type on the location of zeros of the Fourier transform μ̂(z).
As a natural extension of bounded complete Reinhardt domains in to spaces of continuous functions, continuous Reinhardt domains (CRD) are bounded open connected solid sets in commutative C*-algebras with respect to the natural ordering. We give a complete parametric description for the structure of holomorphic isomorphisms between CRDs and characterize the partial Jordan triple structures which can be associated with some CRDs. On the basis of these results, we test two conjectures concerning...