New scaling of Itzykson–Zuber integrals
Recently Entov and Polterovich asked if the Grubb measure was the only symplectic topological measure on the torus. Much to our surprise we discovered a whole new class of intrinsic simple topological measures on the torus, many of which were symplectic.
This paper studies a possible definition of Sobolev spaces in abstract metric spaces, and answers in the affirmative the question whether this definition yields a Banach space. The paper also explores the relationship between this definition and the Hajlasz spaces. For specialized metric spaces the Sobolev embedding theorems are proven. Different versions of capacities are also explored, and these various definitions are compared. The main tool used in this paper is the concept of moduli of path...
Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a -algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a -algebra, that satisfy a given polynomial equation, without multiple roots. In particular, we prove that in the Banach algebra case every such non-central element lies on a complex line, all of whose points satisfy the...
The notions of nil, nilpotent or PI-rings (= rings satisfying a polynomial identity) play an important role in ring theory (see e.g. [8], [11], [20]). Banach algebras with these properties have been studied considerably less and the existing results are scattered in the literature. The only exception is the work of Krupnik [13], where the Gelfand theory of Banach PI-algebras is presented. However, even this work has not get so much attention as it deserves. The present paper...
In what follows we shall describe, in terms of some commutation properties, a method which gives nilpotent elements. Using this method we shall describe the irreducibility for Lie algebras which have Levi-Malçev decomposition property.
Damien Gaboriau a montré récemment que les nombres de Betti des feuilletages mesurés à feuilles contractiles sont des invariants de la relation d’équivalence associée. Sorin Popa a utilisé ce résultat joint à des propriétés de rigidité des facteurs de type II pour en déduire l’existence de facteurs de type II dont le groupe fondamental est trivial.