Displaying 841 – 860 of 1582

Showing per page

A space C(K) where all nontrivial complemented subspaces have big densities

Piotr Koszmider (2005)

Studia Mathematica

Using the method of forcing we prove that consistently there is a Banach space (of continuous functions on a totally disconnected compact Hausdorff space) of density κ bigger than the continuum where all operators are multiplications by a continuous function plus a weakly compact operator and which has no infinite-dimensional complemented subspaces of density continuum or smaller. In particular no separable infinite-dimensional subspace has a complemented superspace of density continuum or smaller,...

A space of generalized distributions

L. Loura (2006)

Czechoslovak Mathematical Journal

In this paper we use a duality method to introduce a new space of generalized distributions. This method is exactly the same introduced by Schwartz for the distribution theory. Our space of generalized distributions contains all the Schwartz distributions and all the multipole series of physicists and is, in a certain sense, the smallest space containing all these series.

A spectral analysis of automorphic distributions and Poisson summation formulas

André Unterberger (2004)

Annales de l’institut Fourier

Automorphic distributions are distributions on d , invariant under the linear action of the group S L ( d , ) . Combs are characterized by the additional requirement of being measures supported in d : their decomposition into homogeneous components involves the family ( 𝔈 i λ d ) λ , of Eisenstein distributions, and the coefficients of the decomposition are given as Dirichlet series 𝒟 ( s ) . Functional equations of the usual (Hecke) kind relative to 𝒟 ( s ) turn out to be equivalent to the invariance of the comb under some modification...

A spectral mapping theorem for Banach modules

H. Seferoğlu (2003)

Studia Mathematica

Let G be a locally compact abelian group, M(G) the convolution measure algebra, and X a Banach M(G)-module under the module multiplication μ ∘ x, μ ∈ M(G), x ∈ X. We show that if X is an essential L¹(G)-module, then σ ( T μ ) = μ ̂ ( s p ( X ) ) ¯ for each measure μ in reg(M(G)), where T μ denotes the operator in B(X) defined by T μ x = μ x , σ(·) the usual spectrum in B(X), sp(X) the hull in L¹(G) of the ideal I X = f L ¹ ( G ) | T f = 0 , μ̂ the Fourier-Stieltjes transform of μ, and reg(M(G)) the largest closed regular subalgebra of M(G); reg(M(G)) contains all...

A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras

Sen Huang (1999)

Studia Mathematica

Let A be a commutative Banach algebra with Gelfand space ∆ (A). Denote by Aut (A) the group of all continuous automorphisms of A. Consider a σ(A,∆(A))-continuous group representation α:G → Aut(A) of a locally compact abelian group G by automorphisms of A. For each a ∈ A and φ ∈ ∆(A), the function φ a ( t ) : = φ ( α t a ) t ∈ G is in the space C(G) of all continuous and bounded functions on G. The weak-star spectrum σ w * ( φ a ) is defined as a closed subset of the dual group Ĝ of G. For φ ∈ ∆(A) we define Ʌ φ a to be the union of all...

A splitting theory for the space of distributions

P. Domański, D. Vogt (2000)

Studia Mathematica

The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'

A stronger Dunford-Pettis property

H. Carrión, P. Galindo, M. L. Lourenço (2008)

Studia Mathematica

We discuss a strong version of the Dunford-Pettis property, earlier named (DP*) property, which is shared by both ℓ₁ and . It is equivalent to the Dunford-Pettis property plus the fact that every quotient map onto c₀ is completely continuous. Other weak sequential continuity results on polynomials and analytic mappings related to the (DP*) property are shown.

A strongly extreme point need not be a denting point in Orlicz spaces equipped with the Orlicz norm

Adam Bohonos, Ryszard Płuciennik (2011)

Banach Center Publications

There are necessary conditions for a point x from the unit sphere to be a denting point of the unit ball of Orlicz spaces equipped with the Orlicz norm generated by arbitrary Orlicz functions. In contrast to results in [12, 17, 16], we present also examples of Orlicz spaces in which strongly extreme points of the unit ball are not denting points.

Currently displaying 841 – 860 of 1582