The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
380
We prove that all measurable functionals on certain function spaces are measures; this improves the (known) results about weak sequential completeness of spaces of measures. As an application, we prove several results of this form: if the space of invariant functionals on a function space is separable then every invariant functional is a measure.
In this paper we investigate linear operators between arbitrary BK spaces and spaces of sequences that are summable or bounded. We give necessary and sufficient conditions for infinite matrices to map into . Further, the Hausdorff measure of noncompactness is applied to give necessary and sufficient conditions for to be a compact operator.
We study the measure of non-compactness of operators between abstract real interpolation spaces. We prove an estimate of this measure, depending on the fundamental function of the space. An application to the spectral theory of linear operators is presented.
Logarithmic convexity of a measure of weak noncompactness for bounded linear operators under Calderón’s complex interpolation is proved. This is a quantitative version for weakly noncompact operators of the following: if T: A₀ → B₀ or T: A₁ → B₁ is weakly compact, then so is for all 0 < θ < 1, where and are interpolation spaces with respect to the pairs (A₀,A₁) and (B₀,B₁). Some formulae for this measure and relations to other quantities measuring weak noncompactness are established.
Sufficient conditions for normal structure of a Banach space are given. One of them implies reflexivity for Banach spaces with an unconditional basis, and also for Banach lattices.
In this paper we show that the ball-measure of non-compactness of a norm bounded subset of an Orlicz modular space L-Psi is equal to the limit of its n-widths. We also obtain several inequalities between the measures of non-compactness and the limit of the n-widths for modular bounded subsets of L-Psi which do not have Delta-2-condition. Minimum conditions on Psi to have such results are specified and an example of such a function Psi is provided.
Currently displaying 101 –
120 of
380