Plongement de dans certains espaces de Banach
Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans .
Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in ℂⁿ. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.
We describe the geometrical structure on a complex quasi-Banach space that is necessay and sufficient for the existence of boundary limits for bounded, -valued analytic functions on the open unit disc of the complex plane. It is shown that in such spaces, closed bounded subsets have many plurisubharmonic barriers and that bounded upper semi-continuous functions on these sets have arbitrarily small plurisubharmonic perturbations that attain their maximum. This yields a certain representation of...
2000 Mathematics Subject Classification: Primary 46B20. Secondary 47A99, 46B42.It was shown in [2] that the most natural equalities valid for every rank-one operator T in real Banach spaces lead either to the Daugavet equation ||I+T|| = 1 + ||T|| or to the equation ||I − T|| = ||I+T||. We study if the spaces where the latter condition is satisfied for every finite-rank operator inherit the properties of Daugavet spaces.
Beurling's classical theorem gives a complete characterization of all invariant subspaces in the Hardy space H²(D). To generalize the theorem to higher dimensions, one is naturally led to determining the structure of each unitary equivalence (resp. similarity) class. This, in turn, requires finding podal (resp. s-podal) points in unitary (resp. similarity) orbits. In this note, we find that H-outer (resp. G-outer) functions play an important role in finding podal (resp. s-podal) points. By the methods...
The aim of this paper is to extend the framework of the spectral method for proving property (T) to the class of reflexive Banach spaces and present a condition implying that every affine isometric action of a given group on a reflexive Banach space has a fixed point. This last property is a strong version of Kazhdan’s property (T) and is equivalent to the fact that for every isometric representation of on . The condition is expressed in terms of -Poincaré constants and we provide examples...
Our understanding of the interplay between Poincaré inequalities, Sobolev inequalities and the geometry of the underlying space has changed considerably in recent years. These changes have simultaneously provided new insights into the classical theory and allowed much of that theory to be extended to a wide variety of different settings. This paper reviews some of these new results and techniques and concludes with an example on the preservation of Sobolev spaces by the maximal function.[Proceedings...
Given a nondegenerate harmonic structure, we prove a Poincaré-type inequality for functions in the domain of the Dirichlet form on nested fractals. We then study the Hajłasz-Sobolev spaces on nested fractals. In particular, we describe how the "weak"-type gradient on nested fractals relates to the upper gradient defined in the context of general metric spaces.
A family of formal solutions of some type of nonlinear partial differential equations is found. Terms of such solutions are Laplace transforms of some Laplace distributions. The series of these distributions are locally finite.