Quelques résultats de M. H. Powell sur le théorème du graphe fermé
Deux décompositions d’une fonctionnelle d’un espace d’ultra-distributions sont étudiées. La première fait intervenir une série convergente de dérivées de mesures dont on montre que les supports peuvent être pris inclus dans le support . La seconde consiste à exprimer comme somme de fonctionnelles du même espace portées par les éléments d’une partition du support de . Dans les deux cas on a recours à des concepts de régularité et de séparation régulière d’ensembles fermés de qui relient la...
Nous donnons des conditions permettant de vérifier que l’image d’une mesure cylindrique sur un espace vectoriel topologique , par une application linéaire continue dans un autre espace vectoriel topologique , est une mesure de Randon. Dans une première partie, nous donnons des résultats généraux qui portent, soit sur des propriétés géométriques de l’espace , soit sur la mesure cylindrique . Dans une seconde partie, nous donnons des conditions plus précises quand est une mesure cylindrique...
It is proved that every real metrizable locally convex space which is not nuclear contains a closed additive subgroup K such that the quotient group G = (span K)/K admits a non-trivial continuous positive definite function, but no non-trivial continuous character. Consequently, G cannot satisfy any form of the Bochner theorem.
We characterize those classes 𝓒 of separable Banach spaces for which there exists a separable Banach space Y not containing ℓ₁ and such that every space in the class 𝓒 is a quotient of Y.
We consider a general concept of Daugavet property with respect to a norming subspace. This concept covers both the usual Daugavet property and its weak* analogue. We introduce and study analogues of narrow operators and rich subspaces in this general setting and apply the results to show that a quotient of L₁[0,1] by an ℓ₁-subspace need not have the Daugavet property. The latter answers in the negative a question posed to us by A. Pełczyński.
On each nonreflexive Banach space X there exists a positive continuous convex function f such that 1/f is not a d.c. function (i.e., a difference of two continuous convex functions). This result together with known ones implies that X is reflexive if and only if each everywhere defined quotient of two continuous convex functions is a d.c. function. Our construction also gives a stronger version of Klee's result concerning renormings of nonreflexive spaces and non-norm-attaining functionals.
Assuming ⋄, we construct a connected compact topological space K such that for every closed L ⊂ K the Banach space C(L) has few operators, in the sense that every operator on C(L) is multiplication by a continuous function plus a weakly compact operator. In particular, C(K) is indecomposable and has continuum many non-isomorphic indecomposable quotients, and K does not contain a homeomorphic copy of βℕ. Moreover, assuming CH we construct a connected compact K where C(K) has few...