On the derived tensor product functors for (DF)- and Fréchet spaces
For a (DF)-space E and a tensor norm α we investigate the derivatives of the tensor product functor from the category of Fréchet spaces to the category of linear spaces. Necessary and sufficient conditions for the vanishing of , which is strongly related to the exactness of tensored sequences, are presented and characterizations in the nuclear and (co-)echelon cases are given.