Real Analytic Curves in Fréchet Spaces and Their Duals.
We define the ε-product of an εb-space by quotient bornological spaces and we show that if G is a Schwartz εb-space and E|F is a quotient bornological space, then their εc-product Gεc(E|F) defined in [2] is isomorphic to the quotient bornological space (GεE)|(GεF).
Para un b-espacio nuclear N y un b-espacio E demostramos que si X es un espacio compacto entonces los b-espacios C (X,NεE) y NεC (X,E) son isomorfos. El mismo resultado se verifica también si X es un espacio localmente compacto que es numerable en el infinito.
We introduce and study the notion of Taylorian points of algebraic curves in , which enables us to define intrinsic Taylor interpolation polynomials on curves. These polynomials in turn lead to the construction of a well-behaved Hermitian scheme on curves, of which we give several examples. We show that such Hermitian schemes can be collected to obtain Hermitian bivariate polynomial interpolation schemes.
We show by example that the associative law does not hold for tensor products in the category of general (not necessarily locally convex) topological vector spaces. The same pathology occurs for tensor products of Hausdorff abelian topological groups.
Let denote the operator-norm closure of the class of convolution operators where is a suitable function space on . Let be the closed subspace of regular functions in the Marinkiewicz space , . We show that the space is isometrically isomorphic to and that strong operator sequential convergence and norm convergence in coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on .
The aim of the present article is to introduce and investigate topological properties by operator. We obtain good stability properties for the density condition and the strong dual density condition by taking injective tensor products. Further we analyze the connection to (DF)-properties by operator.
In this paper we modify a construction due to J. Taskinen to get a Fréchet space F which satisfies the density condition such that the complete injective tensor product l2 x~eF'b does not satisfy the strong dual density condition of Bierstedt and Bonet. In this way a question that remained open in Heinrichs (1997) is solved.
It is shown that a sequentially complete topological vector space X with a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-homogeneous norm bounded on every compact subset of X.