On some curves in vector lattices.
Two problems posed by Choquet and Foias are solved:(i) Let be a positive linear operator on the space of continuous real-valued functions on a compact Hausdorff space . It is shown that if converges pointwise to a continuous limit, then the convergence is uniform on .(ii) An example is given of a Choquet simplex and a positive linear operator on the space of continuous affine real-valued functions on , such thatfor each in , but does not converge to 0.
In this paper, we introduce and study the class of almost weak Dunford-Pettis operators. As consequences, we derive the following interesting results: the domination property of this class of operators and characterizations of the wDP property. Next, we characterize pairs of Banach lattices for which each positive almost weak Dunford-Pettis operator is almost Dunford-Pettis.
We introduce and study the disjoint weak -convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak -convergent operators. Next, we examine the relationship between disjoint weak -convergent operators and disjoint -convergent operators. Finally, we characterize order bounded disjoint weak -convergent operators in terms...
Let be an Archimedean -group. We denote by and the divisible hull of and the distributive radical of , respectively. In the present note we prove the relation . As an application, we show that if is Archimedean, then it is completely distributive if and only if it can be regularly embedded into a completely distributive vector lattice.
We establish some sufficient conditions under which the subspaces of Dunford-Pettis operators, of M-weakly compact operators, of L-weakly compact operators, of weakly compact operators, of semi-compact operators and of compact operators coincide and we give some consequences.
In this note we prove that there exists a Carathéodory vector lattice such that and . This yields that is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.