On operators from separable reflexive spaces with asymptotic structure
Let 1 < q < p < ∞ and q ≤ r ≤ p. Let X be a reflexive Banach space satisfying a lower--tree estimate and let T be a bounded linear operator from X which satisfies an upper--tree estimate. Then T factors through a subspace of , where (Fₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an FDD. Similarly, let 1 < q < r < p < ∞ and let X be a separable reflexive Banach space satisfying an asymptotic lower--tree...