The search session has expired. Please query the service again.
We show that, given an n-dimensional normed space X, a sequence of independent random vectors , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map defined by embeds X in with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into with asymptotically best possible relation between N, n, and ε.
We present a general result on regularization of an arbitrary convex body (and more generally a star body), which gives and extends global forms of a number of well known local facts, like the low M*-estimates, large Euclidean sections of finite volume-ratio spaces and others.
We provide for every 2 ≤ k ≤ n an n-dimensional Banach space E with a unique distance ellipsoid such that there are precisely k linearly independent contact points between and . The corresponding result holds for spaces with non-unique distance ellipsoids as well. We construct n-dimensional Banach spaces E such that one distance ellipsoid has precisely k linearly independent contact points and all other distance ellipsoids have less than k-1 such points.
In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an -space, then it is either an -space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non-commutative -spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which can be considered...
Currently displaying 1 –
5 of
5