The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We define the ε-product of an εb-space by quotient bornological spaces and we show that if G is a Schwartz εb-space and E|F is a quotient bornological space, then their εc-product Gεc(E|F) defined in [2] is isomorphic to the quotient bornological space (GεE)|(GεF).
We show that n-dimensional spaces with maximal projection constants exist not only as subspaces of but also as subspaces of l₁. They are characterized by a rigid set of vector conditions. Nevertheless, we show that, in general, there are many non-isometric spaces with maximal projection constants. Several examples are discussed in detail.
Every frame in Hilbert space contains a subsequence equivalent to an orthogonal basis. If a frame is n-dimensional then this subsequence has length (1 - ε)n. On the other hand, there is a frame which does not contain bases with brackets.
It is shown that if a Banach space X is not isomorphic to a Hilbert space then the spaces ℓ₂(X) and Rad(X) contain a subspace Z without local unconditional structure, and therefore without an unconditional basis. Moreover, if X is of cotype r < ∞, then a subspace Z of ℓ₂(X) can be constructed without local unconditional structure but with 2-dimensional unconditional decomposition, hence also with basis.
Currently displaying 1 –
7 of
7