Page 1

Displaying 1 – 6 of 6

Showing per page

Can ( p ) ever be amenable?

Matthew Daws, Volker Runde (2008)

Studia Mathematica

It is known that ( p ) is not amenable for p = 1,2,∞, but whether or not ( p ) is amenable for p ∈ (1,∞) ∖ 2 is an open problem. We show that, if ( p ) is amenable for p ∈ (1,∞), then so are ( ( p ) ) and ( ( p ) ) . Moreover, if ( ( p ) ) is amenable so is ( , ( E ) ) for any index set and for any infinite-dimensional p -space E; in particular, if ( ( p ) ) is amenable for p ∈ (1,∞), then so is ( ( p ² ) ) . We show that ( ( p ² ) ) is not amenable for p = 1,∞, but also that our methods fail us if p ∈ (1,∞). Finally, for p ∈ (1,2) and a free ultrafilter over ℕ, we exhibit...

Comparing gaussian and Rademacher cotype for operators on the space of continuous functions

Marius Junge (1996)

Studia Mathematica

We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 < q < ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if ( k ( ( T x k F ) / ( l o g ( k + 1 ) ) ) q ) 1 / q c k ɛ k x k L 2 ( C ( K ) ) , for all sequences ( x k ) k C ( K ) with ( T x k ) k = 1 n decreasing. (2) T is of Rademacher cotype q if and only if ( k ( T x k F ( ( l o g ( k + 1 ) ) q ) ) 1 / q c k g k x k L 2 ( C ( K ) ) , for all sequences ( x k ) k C ( K ) with ( T x k ) k = 1 n decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.

Copies of l p n ’s uniformly in the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X )

Dumitru Popa (2017)

Czechoslovak Mathematical Journal

We study the presence of copies of l p n ’s uniformly in the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X ) . By using Dvoretzky’s theorem we deduce that if X is an infinite-dimensional Banach space, then Π 2 ( C [ 0 , 1 ] , X ) contains λ 2 -uniformly copies of l n ’s and Π 1 ( C [ 0 , 1 ] , X ) contains λ -uniformly copies of l 2 n ’s for all λ > 1 . As an application, we show that if X is an infinite-dimensional Banach space then the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X ) are distinct, extending the well-known result that the spaces Π 2 ( C [ 0 , 1 ] , X ) and 𝒩 ( C [ 0 , 1 ] , X ) are distinct.

Currently displaying 1 – 6 of 6

Page 1