Sequentially compact sets in a class of generalized Orlicz spaces
In this paper, we will characterize sequentially compact sets in a class of generalized Orlicz spaces.
In this paper, we will characterize sequentially compact sets in a class of generalized Orlicz spaces.
We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order , and those defined by the dual property, the sequentially Right Banach spaces of order for . These classes of Banach spaces are characterized by the notions of -limited sets in the corresponding dual space and subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space and a reflexive Banach space...
We extend Zajíček’s theorem from [Za] about points of singlevaluedness of monotone operators on Asplund spaces. Namely we prove that every monotone operator on a subspace of a Banach space containing densely a continuous image of an Asplund space (these spaces are called GSG spaces) is singlevalued on the whole space except a -cone supported set.
It is an open question when the direct sum of normed spaces inherits uniform rotundity in every direction from the factor spaces. M. Smith [4] showed that, in general, the answer is negative. The purpose of this paper is to carry out a complete study of Smith's counterexample.
In any separable Banach space containing c 0 which admits a C k-smooth bump, every continuous function can be approximated by a C k-smooth function whose range of derivative is of the first category. Moreover, the approximation can be constructed in such a way that its derivative avoids a prescribed countable set (in particular the approximation can have no critical points). On the other hand, in a Banach space with the RNP, the range of the derivative of every smooth bounded bump contains a set...
There is given a criterion for an arbitrary element from the unit sphere of Musielak-Orlicz function space equipped with the Luxemburg norm to be a point of smoothness. Next, as a corollary, a criterion of smoothness of these spaces is given.
We show that, if μ is a probability measure and X is a Banach space, then the space L¹(μ,X) of Bochner integrable functions admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm provided that X has such a norm, and that if X admits an equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then L¹(μ,X) has an equivalent renorming whose restriction to every reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.
First, we extend the criteria for smooth points of from [22] to the whole class of Musielak-Orlicz spaces. Next, we present criteria for very smooth and strongly smooth points of .
Sobczyk's theorem is usually stated as: every copy of c0 inside a separable Banach space is complemented by a projection with norm at most 2. Nevertheless, our understanding is not complete until we also recall: and c0 is not complemented in l∞. Now the limits of the phenomenon are set: although c0 is complemented in separable superspaces, it is not necessarily complemented in a non-separable superspace, such as l∞.