Displaying 1001 – 1020 of 1093

Showing per page

Two mappings related to semi-inner products and their applications in geometry of normed linear spaces

Sever Silvestru Dragomir, Jaromír J. Koliha (2000)

Applications of Mathematics

In this paper we introduce two mappings associated with the lower and upper semi-inner product ( · , · ) i and ( · , · ) s and with semi-inner products [ · , · ] (in the sense of Lumer) which generate the norm of a real normed linear space, and study properties of monotonicity and boundedness of these mappings. We give a refinement of the Schwarz inequality, applications to the Birkhoff orthogonality, to smoothness of normed linear spaces as well as to the characterization of best approximants.

Types on stable Banach spaces

José Iovino (1998)

Fundamenta Mathematicae

 We prove a geometric characterization of Banach space stability. We show that a Banach space X is stable if and only if the following condition holds. Whenever X ^ is an ultrapower of X and B is a ball in X ^ , the intersection B ∩ X can be uniformly approximated by finite unions and intersections of balls in X; furthermore, the radius of these balls can be taken arbitrarily close to the radius of B, and the norm of their centers arbitrarily close to the norm of the center of B.  The preceding condition...

U-ideals of factorable operators

Kamil John (1999)

Czechoslovak Mathematical Journal

We suggest a method of renorming of spaces of operators which are suitably approximable by sequences of operators from a given class. Further we generalize J. Johnsons’s construction of ideals of compact operators in the space of bounded operators and observe e.g. that under our renormings compact operators are u -ideals in the: space of 2-absolutely summing operators or in the space of operators factorable through a Hilbert space.

Uncomplementability of spaces of compact operators in larger spaces of operators

Giovanni Emmanuele, Kamil John (1997)

Czechoslovak Mathematical Journal

In the first part of the paper we prove some new result improving all those already known about the equivalence of the nonexistence of a projection (of any norm) onto the space of compact operators and the containment of c 0 in the same space of compact operators. Then we show several results implying that the space of compact operators is uncomplemented by norm one projections in larger spaces of operators. The paper ends with a list of questions naturally rising from old results and the results...

Uncomplemented copies of C(K) inside C(K).

Francisco Arranz (1996)

Extracta Mathematicae

Throughout this note, whenever K is a compact space C(K) denotes the Banach space of continuous functions on K endowed with the sup norm. Though it is well known that every infinite dimensional Banach space contains uncomplemented subspaces, things may be different when only C(K) spaces are considered. For instance, every copy of l∞ = C(BN) is complemented wherever it is found. In [5] Pelzcynski found: Theorem 1. Let K be a compact metric space. If a separable Banach space X contains a subspace...

Unconditional ideals in Banach spaces

G. Godefroy, N. Kalton, P. Saphar (1993)

Studia Mathematica

We show that a Banach space with separable dual can be renormed to satisfy hereditarily an “almost” optimal uniform smoothness condition. The optimal condition occurs when the canonical decomposition X * * * = X X * is unconditional. Motivated by this result, we define a subspace X of a Banach space Y to be an h-ideal (resp. a u-ideal) if there is an hermitian projection P (resp. a projection P with ∥I-2P∥ = 1) on Y* with kernel X . We undertake a general study of h-ideals and u-ideals. For example we show that...

Unconditional ideals of finite rank operators

Trond A. Abrahamsen, Asvald Lima, Vegard Lima (2008)

Czechoslovak Mathematical Journal

Let X be a Banach space. We give characterizations of when ( Y , X ) is a u -ideal in 𝒲 ( Y , X ) for every Banach space Y in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ( X , Y ) is a u -ideal in 𝒲 ( X , Y ) for every Banach space Y , when ( Y , X ) is a u -ideal in 𝒲 ( Y , X * * ) for every Banach space Y , and when ( Y , X ) is a u -ideal in 𝒦 ( Y , X * * ) for every Banach space Y .

Unconditionally convergent polynomials in Banach spaces and related properties.

M.ª Teresa Fernández Unzueta (1997)

Extracta Mathematicae

Our aim is to introduce a new notion of unconditionallity, in the context of polynomials in Banach spaces, that looks directly to the polynomial topology defined on the involved spaces. This notion allows us to generalize some well-known relations of duality that appear in the linear context.

Uncountable sets of unit vectors that are separated by more than 1

Tomasz Kania, Tomasz Kochanek (2016)

Studia Mathematica

Let X be a Banach space. We study the circumstances under which there exists an uncountable set 𝓐 ⊂ X of unit vectors such that ||x-y|| > 1 for any distinct x,y ∈ 𝓐. We prove that such a set exists if X is quasi-reflexive and non-separable; if X is additionally super-reflexive then one can have ||x-y|| ≥ slant 1 + ε for some ε > 0 that depends only on X. If K is a non-metrisable compact, Hausdorff space, then the unit sphere of X = C(K) also contains such a subset; if moreover K is perfectly...

Currently displaying 1001 – 1020 of 1093