On the extension of rotund norms.
It is shown that if a Banach space X has the weak Banach-Saks property and the weak fixed point property for nonexpansive mappings and Y has the asymptotic (P) property (which is weaker than the condition WCS(Y) > 1), then X ⊕ Y endowed with a strictly monotone norm enjoys the weak fixed point property. The same conclusion is valid if X admits a 1-unconditional basis.
We show that if a Banach space X has the weak fixed point property for nonexpansive mappings and Y has the generalized Gossez-Lami Dozo property or is uniformly convex in every direction, then the direct sum X ⊕ Y with a strictly monotone norm has the weak fixed point property. The result is new even if Y is finite-dimensional.
The notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of...
We use one-dimensional differential inequalities to estimate the squareness and type of Banach spaces with modulus of convexity of power type two. The estimates obtained are sharp and the constants involved moderate.
We give an alternative proof of the stable manifold theorem as an application of the (right and left) inverse mapping theorem on a space of sequences. We investigate the diffeomorphism class of the global stable manifold, a problem which in the general Banach setting gives rise to subtle questions about the possibility of extending germs of diffeomorphisms.
In this paper we define a generalized Cesàro sequence space and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space posses property (H) and property (G), and it is rotund, where is a bounded sequence of positive real numbers with for all .
In this paper, we define the direct sum of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that has the H-property if and only if each has the H-property, and has the Schur property if and only if each has the Schur property. Moreover, we also show that is rotund if and only if each is rotund.
Boulahia and the present authors introduced the Orlicz norm in the class -a.p. of Besicovitch-Orlicz almost periodic functions and gave several formulas for it; they also characterized the reflexivity of this space [Comment. Math. Univ. Carolin. 43 (2002)]. In the present paper, we consider the problem of k-convexity of -a.p. with respect to the Orlicz norm; we give necessary and sufficient conditions in terms of strict convexity and reflexivity.
In this paper, we obtain criteria for KR and WKR points in Orlicz function spaces equipped with the Luxemburg norm.
R. M. Aron and R. H. Lohman introduced, in [1], the notion of lambda-property in a normed space and calculated the lambda-function for some classical normed spaces. In this paper we give some more general remarks on this lambda-property and compute the lambda-function of other normed spaces, namely: B(S,∑,X) and Md(E).
The Lifshits theorem states that any k-uniformly Lipschitz map with a bounded orbit on a complete metric space X has a fixed point provided k < ϰ(X) where ϰ(X) is the so-called Lifshits constant of X. For many spaces we have ϰ(X) > 1. It is interesting whether we can use the Lifshits theorem in the theory of iterated function systems. Therefore we investigate the value of the Lifshits constant for several classes of hyperspaces.
In the paper, a sufficient and necessary condition is given for the locally uniformly weak star rotundity of Orlicz spaces with Orlicz norms.